Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins.

نویسندگان

  • Shane D Trask
  • Philip R Dormitzer
چکیده

Assembly of the rotavirus outer capsid is the final step of a complex pathway. In vivo, the later steps include a maturational membrane penetration that is dependent on the scaffolding activity of a viral nonstructural protein. In vitro, simply adding the recombinant outer capsid proteins VP4 and VP7 to authentic double-layered rotavirus subviral particles (DLPs) in the presence of calcium and acidic pH increases infectivity by a factor of up to 10(7), yielding particles as infectious as authentic purified virions. VP4 must be added before VP7 for high-level infectivity. Steep dependence of infectious recoating on VP4 concentration suggests that VP4-VP4 interactions, probably oligomerization, precede VP4 binding to particles. Trypsin sensitivity analysis identifies two populations of VP4 associated with recoated particles: properly mounted VP4 that can be specifically primed by trypsin, and nonspecifically associated VP4 that is degraded by trypsin. A full complement of properly assembled VP4 is not required for efficient infectivity. Minimal dependence of recoating on VP7 concentration suggests that VP7 binds DLPs with high affinity. The parameters for efficient recoating and the characterization of recoated particles suggest a model in which, after a relatively weak interaction between oligomeric VP4 and DLPs, VP7 binds the particles and locks VP4 in place. Recoating will allow the use of infectious modified rotavirus particles to explore rotavirus assembly and cell entry and could lead to practical applications in novel immunization strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein.

Mammalian reoviruses, prototype members of the Reoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins--sigma1, mu1, and sigma3--to enter host cells. sigma1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of sigma1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious ...

متن کامل

Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry.

Experiments in cell-free systems have demonstrated that the VP5 cleavage fragment of the rotavirus spike protein, VP4, undergoes a foldback rearrangement that translocates three clustered hydrophobic loops from one end of the molecule to the other. This conformational change resembles the foldback rearrangements of enveloped virus fusion proteins. By recoating rotavirus subviral particles with ...

متن کامل

Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus.

Several nonenveloped animal viruses possess an autolytic capsid protein that is cleaved as a maturation step during assembly to yield infectious virions. The 76-kDa major outer capsid protein micro1 of mammalian orthoreoviruses (reoviruses) is also thought to be autocatalytically cleaved, yielding the virion-associated fragments micro1N (4 kDa; myristoylated) and micro1C (72 kDa). In this study...

متن کامل

Reovirus nonstructural protein muNS binds to core particles but does not inhibit their transcription and capping activities.

Previous studies provided evidence that nonstructural protein muNS of mammalian reoviruses is present in particle assembly intermediates isolated from infected cells. Morgan and Zweerink (Virology 68:455-466, 1975) showed that a subset of these intermediates, which can synthesize the viral plus strand RNA transcripts in vitro, comprise core-like particles plus large amounts of muNS. Given the p...

متن کامل

Ultrastructural Study of Rotavirus Replication and Localization of the Intermediate Capsid Protein VP6

Rotavirus, a triple-layered non-enveloped member of the Reoviridae family, obtained a transient membrane envelope when newly synthesized subviral particles bud into the endoplasmic reticulum (ER). As rotavirus particles mature, they lose their transient membrane and obtain outer layer. It is mostly believed that only double layered particles bud into the ER. The present study describes that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 80 22  شماره 

صفحات  -

تاریخ انتشار 2006